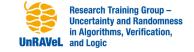


14th International Workshop on Confluence

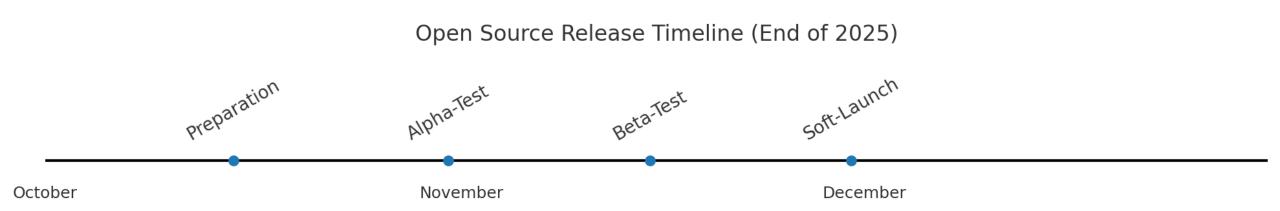
Jan-Christoph Kassing and Tobias Sokolowski

02.09.2025

AProVE25: Confluence Analysis in a Termination Tool



- AProVE (Automated Program Verification Environment):
 - o Automated Termination, Complexity, and Safety Prover for Java, C, Term Rewriting, Integer Programs, etc.

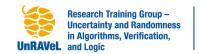

o Confluence Analysis:

- Orthogonality Check
- Strong Confluence Check
- Modularity Results:
 - Disjoint Union
 - Constructor Sharing
 - Compositable
- Newman Lemma Check (WCR + Termination)
- Disproving Confluence by Searching for Counterexamples
- Open Source Release: End of This Year

Open Source Release

Target License: LGPL (Lesser General Public License)

- You can use, modify, and redistribute LGPL software (for free or commercially).
- If you modify the LGPL-covered code itself, you must release those modifications under the LGPL.
- If you just use the library (e.g., link to it in your own code), your own program does not have to be LGPL/GPL.



Future Ideas:

- Probabilistic Rewriting and Confluence
 - Newman Lemma for Probabilistic Rewriting? (Hard Open Problem, [Faggian 2022])

- Probabilistic Rewriting and Reachability / Infeasibility (Current Research)
 - **Given**: Terms s, t and probability p.
 - Question: Does there exist a substitution σ such that $s\sigma \to t\sigma$ with at least / at most probability p?

