61.78/60.03 sh: line 1: 61435 Alarm clock /export/starexec/sandbox/solver/bin/yices 2> /dev/null
61.78/60.04 sh: line 1: 61459 Alarm clock /export/starexec/sandbox/solver/bin/yices 2> /dev/null
61.78/60.05 MAYBE
61.78/60.05 (ignored inputs)COMMENT submitted by: Johannes Waldmann
61.78/60.05 Rewrite Rules:
61.78/60.05 [ a(b(?x)) -> b(c(?x)),
61.78/60.05 c(b(?x)) -> b(c(?x)),
61.78/60.05 c(b(?x)) -> c(c(?x)),
61.78/60.05 b(b(?x)) -> a(c(?x)),
61.78/60.05 a(b(?x)) -> a(b(?x)),
61.78/60.05 c(c(?x)) -> c(b(?x)),
61.78/60.05 a(c(?x)) -> c(a(?x)) ]
61.78/60.05 Apply Direct Methods...
61.78/60.05 Inner CPs:
61.78/60.05 [ a(a(c(?x_3))) = b(c(b(?x_3))),
61.78/60.05 c(a(c(?x_3))) = b(c(b(?x_3))),
61.78/60.05 c(a(c(?x_3))) = c(c(b(?x_3))),
61.78/60.05 a(a(c(?x_3))) = a(b(b(?x_3))),
61.78/60.05 c(b(c(?x_1))) = c(b(b(?x_1))),
61.78/60.05 c(c(c(?x_2))) = c(b(b(?x_2))),
61.78/60.05 a(b(c(?x_1))) = c(a(b(?x_1))),
61.78/60.05 a(c(c(?x_2))) = c(a(b(?x_2))),
61.78/60.05 a(c(b(?x_5))) = c(a(c(?x_5))),
61.78/60.05 b(a(c(?x))) = a(c(b(?x))),
61.78/60.05 c(c(b(?x))) = c(b(c(?x))) ]
61.78/60.05 Outer CPs:
61.78/60.05 [ b(c(?x)) = a(b(?x)),
61.78/60.05 b(c(?x_1)) = c(c(?x_1)) ]
61.78/60.05 not Overlay, check Termination...
61.78/60.05 unknown/not Terminating
61.78/60.05 unknown Knuth & Bendix
61.78/60.05 Linear
61.78/60.05 unknown Development Closed
61.78/60.05 unknown Strongly Closed
61.78/60.05 unknown Weakly-Non-Overlapping & Non-Collapsing & Shallow
61.78/60.05 unknown Upside-Parallel-Closed/Outside-Closed
61.78/60.05 (inner) Parallel CPs: (not computed)
61.78/60.05 unknown Toyama (Parallel CPs)
61.78/60.05 Simultaneous CPs:
61.78/60.05 [ a(b(?x)) = b(c(?x)),
61.78/60.05 a(a(c(?x_4))) = b(c(b(?x_4))),
61.78/60.05 c(c(?x)) = b(c(?x)),
61.78/60.05 c(a(c(?x_4))) = b(c(b(?x_4))),
61.78/60.05 c(b(a(c(?x_4)))) = c(b(c(b(?x_4)))),
61.78/60.05 c(a(a(c(?x_4)))) = a(b(c(b(?x_4)))),
61.78/60.05 c(b(b(?x))) = c(b(c(?x))),
61.78/60.05 c(a(b(?x))) = a(b(c(?x))),
61.78/60.05 b(c(?x)) = c(c(?x)),
61.78/60.05 c(a(c(?x_4))) = c(c(b(?x_4))),
61.78/60.05 c(b(a(c(?x_4)))) = c(c(c(b(?x_4)))),
61.78/60.05 c(a(a(c(?x_4)))) = a(c(c(b(?x_4)))),
61.78/60.05 c(b(b(?x))) = c(c(c(?x))),
61.78/60.05 c(a(b(?x))) = a(c(c(?x))),
61.78/60.05 b(a(c(?x_1))) = a(c(b(?x_1))),
61.78/60.05 a(c(a(c(?x_1)))) = b(a(c(b(?x_1)))),
61.78/60.05 b(c(a(c(?x_1)))) = a(a(c(b(?x_1)))),
61.78/60.05 b(c(a(c(?x_1)))) = c(a(c(b(?x_1)))),
61.78/60.05 c(c(a(c(?x_1)))) = c(a(c(b(?x_1)))),
61.78/60.05 a(b(a(c(?x_1)))) = a(a(c(b(?x_1)))),
61.78/60.05 a(c(b(?x))) = b(a(c(?x))),
61.78/60.05 b(c(b(?x))) = a(a(c(?x))),
61.78/60.05 b(c(b(?x))) = c(a(c(?x))),
61.78/60.05 c(c(b(?x))) = c(a(c(?x))),
61.78/60.05 a(b(b(?x))) = a(a(c(?x))),
61.78/60.05 b(c(?x)) = a(b(?x)),
61.78/60.05 a(a(c(?x_5))) = a(b(b(?x_5))),
61.78/60.05 c(c(b(?x_1))) = c(b(c(?x_1))),
61.78/60.05 c(b(c(?x_3))) = c(b(b(?x_3))),
61.78/60.05 c(c(c(?x_4))) = c(b(b(?x_4))),
61.78/60.05 c(b(c(b(?x_1)))) = c(c(b(c(?x_1)))),
61.78/60.05 c(b(b(c(?x_3)))) = c(c(b(b(?x_3)))),
61.78/60.05 c(b(c(c(?x_4)))) = c(c(b(b(?x_4)))),
61.78/60.05 c(a(c(b(?x_1)))) = a(c(b(c(?x_1)))),
61.78/60.05 c(a(b(c(?x_3)))) = a(c(b(b(?x_3)))),
61.78/60.05 c(a(c(c(?x_4)))) = a(c(b(b(?x_4)))),
61.78/60.05 c(b(c(?x))) = c(c(b(?x))),
61.78/60.05 c(a(c(?x))) = a(c(b(?x))),
61.78/60.05 a(b(c(?x_3))) = c(a(b(?x_3))),
61.78/60.05 a(c(c(?x_4))) = c(a(b(?x_4))),
61.78/60.05 a(c(b(?x_7))) = c(a(c(?x_7))) ]
61.78/60.05 unknown Okui (Simultaneous CPs)
61.78/60.05 unknown Strongly Depth-Preserving & Root-E-Closed/Non-E-Overlapping
61.78/60.05 unknown Strongly Weight-Preserving & Root-E-Closed/Non-E-Overlapping
61.78/60.05 check Locally Decreasing Diagrams by Rule Labelling...
61.78/60.05 Critical Pair by Rules <3, 0> preceded by [(a,1)]
61.78/60.05 unknown Diagram Decreasing
61.78/60.05 check Non-Confluence...
61.78/60.05 obtain 10 rules by 3 steps unfolding
61.78/60.05 obtain 100 candidates for checking non-joinability
61.78/60.05 check by TCAP-Approximation (failure)
61.78/60.05 check by Ordering(rpo), check by Tree-Automata Approximation (failure)
61.78/60.05 check by Interpretation(mod2) (failure)
61.78/60.05 check by Descendants-Approximation, check by Ordering(poly) (failure)
61.78/60.05 unknown Non-Confluence
61.78/60.05 unknown Huet (modulo AC)
61.78/60.05 check by Reduction-Preserving Completion...
61.78/60.05 STEP: 1 (parallel)
61.78/60.05 S:
61.78/60.05 [ a(b(?x)) -> b(c(?x)),
61.78/60.05 c(b(?x)) -> b(c(?x)),
61.78/60.05 b(b(?x)) -> a(c(?x)),
61.78/60.05 a(c(?x)) -> c(a(?x)) ]
61.78/60.05 P:
61.78/60.05 [ c(b(?x)) -> c(c(?x)),
61.78/60.05 a(b(?x)) -> a(b(?x)),
61.78/60.05 c(c(?x)) -> c(b(?x)) ]
61.78/60.05 S: terminating
61.78/60.05 CP(S,S):
61.78/60.05 --> => no
61.78/60.05 --> => yes
61.78/60.05 --> => no
61.78/60.05 --> => yes
61.78/60.05 PCP_in(symP,S):
61.78/60.05 --> => no
61.78/60.05 --> => no
61.78/60.05 CP(S,symP):
61.78/60.05 --> => yes
61.78/60.05 --> => no
61.78/60.05 --> => no
61.78/60.05 --> => yes
61.78/60.05 --> => no
61.78/60.05 check joinability condition:
61.78/60.05 check modulo joinability of c(a(a(?x_2))) and c(c(a(?x_2))): maybe not joinable
61.78/60.05 check modulo joinability of b(c(a(?x))) and b(c(c(?x))): joinable by {0}
61.78/60.05 check modulo joinability of c(c(a(?x_3))) and b(c(c(?x_3))): joinable by {0}
61.78/60.05 check modulo joinability of b(c(c(?x_1))) and c(c(a(?x_1))): joinable by {0}
61.78/60.05 check modulo joinability of b(c(c(?x))) and c(c(a(?x))): joinable by {0}
61.78/60.05 check modulo reachablity from b(c(?x)) to c(c(?x)): maybe not reachable
61.78/60.05 check modulo joinability of c(c(a(?x))) and b(c(c(?x))): joinable by {0}
61.78/60.05 failed
61.78/60.05 failure(Step 1)
61.78/60.05 [ c(c(?x)) -> b(c(?x)) ]
61.78/60.05 Added S-Rules:
61.78/60.05 [ c(c(?x)) -> b(c(?x)) ]
61.78/60.05 Added P-Rules:
61.78/60.05 [ ]
61.78/60.05 STEP: 2 (linear)
61.78/60.05 S:
61.78/60.05 [ a(b(?x)) -> b(c(?x)),
61.78/60.05 c(b(?x)) -> b(c(?x)),
61.78/60.05 b(b(?x)) -> a(c(?x)),
61.78/60.05 a(c(?x)) -> c(a(?x)) ]
61.78/60.05 P:
61.78/60.05 [ c(b(?x)) -> c(c(?x)),
61.78/60.05 a(b(?x)) -> a(b(?x)),
61.78/60.05 c(c(?x)) -> c(b(?x)) ]
61.78/60.05 S: terminating
61.78/60.05 CP(S,S):
61.78/60.05 --> => no
61.78/60.05 --> => yes
61.78/60.05 --> => no
61.78/60.05 --> => yes
61.78/60.05 CP_in(symP,S):
61.78/60.05 --> => no
61.78/60.05 --> => no
61.78/60.05 CP(S,symP):
61.78/60.05 --> => yes
61.78/60.05 --> => no
61.78/60.05 --> => no
61.78/60.05 --> => yes
61.78/60.05 --> => no
61.78/60.05 check joinability condition:
61.78/60.05 check modulo joinability of c(a(a(?x_2))) and c(c(a(?x_2))): maybe not joinable
61.78/60.05 check modulo joinability of b(c(a(?x))) and b(c(c(?x))): maybe not joinable
61.78/60.05 check modulo joinability of b(c(c(?x))) and c(c(a(?x))): joinable by {0}
61.78/60.05 check modulo joinability of c(c(a(?x))) and b(c(c(?x))): joinable by {0}
61.78/60.05 check modulo joinability of b(c(c(?x))) and c(c(a(?x))): joinable by {0}
61.78/60.05 check modulo reachablity from b(c(?x)) to c(c(?x)): maybe not reachable
61.78/60.05 check modulo joinability of c(c(a(?x))) and b(c(c(?x))): joinable by {0}
61.78/60.05 failed
61.78/60.05 failure(Step 2)
61.78/60.05 [ c(c(?x)) -> b(c(?x)) ]
61.78/60.05 Added S-Rules:
61.78/60.05 [ c(c(?x)) -> b(c(?x)) ]
61.78/60.05 Added P-Rules:
61.78/60.05 [ ]
61.78/60.05 STEP: 3 (relative)
61.78/60.05 S:
61.78/60.05 [ a(b(?x)) -> b(c(?x)),
61.78/60.05 c(b(?x)) -> b(c(?x)),
61.78/60.05 b(b(?x)) -> a(c(?x)),
61.78/60.05 a(c(?x)) -> c(a(?x)) ]
61.78/60.05 P:
61.78/60.05 [ c(b(?x)) -> c(c(?x)),
61.78/60.05 a(b(?x)) -> a(b(?x)),
61.78/60.05 c(c(?x)) -> c(b(?x)) ]
61.78/60.05 Check relative termination:
61.78/60.05 [ a(b(?x)) -> b(c(?x)),
61.78/60.05 c(b(?x)) -> b(c(?x)),
61.78/60.05 b(b(?x)) -> a(c(?x)),
61.78/60.05 a(c(?x)) -> c(a(?x)) ]
61.78/60.05 [ c(b(?x)) -> c(c(?x)),
61.78/60.05 a(b(?x)) -> a(b(?x)),
61.78/60.05 c(c(?x)) -> c(b(?x)) ]
61.78/60.05 Polynomial Interpretation:
61.78/60.05 a:= (2)+(2)*x1
61.78/60.05 b:= (2)*x1
61.78/60.05 c:= (2)*x1
61.78/60.05 retract a(b(?x)) -> b(c(?x))
61.78/60.05 Polynomial Interpretation:
61.78/60.05 a:= (2)*x1
61.78/60.05 b:= (3)+(2)*x1
61.78/60.05 c:= (2)*x1
61.78/60.05 retract a(b(?x)) -> b(c(?x))
61.78/60.05 retract c(b(?x)) -> b(c(?x))
61.78/60.05 retract b(b(?x)) -> a(c(?x))
61.78/60.05 retract c(b(?x)) -> c(c(?x))
61.78/60.05 Polynomial Interpretation:
61.78/60.05 a:= (1)*x1*x1
61.78/60.05 b:= (2)+(2)*x1+(1)*x1*x1
61.78/60.05 c:= (2)+(2)*x1+(1)*x1*x1
61.78/60.05 relatively terminating
61.78/60.05 S/P: relatively terminating
61.78/60.05 check CP condition:
61.78/60.05 failed
61.78/60.05 failure(Step 3)
61.78/60.05 STEP: 4 (parallel)
61.78/60.05 S:
61.78/60.05 [ a(b(?x)) -> b(c(?x)),
61.78/60.05 c(b(?x)) -> b(c(?x)),
61.78/60.05 b(b(?x)) -> a(c(?x)),
61.78/60.05 a(c(?x)) -> c(a(?x)),
61.78/60.05 c(c(?x)) -> b(c(?x)) ]
61.78/60.05 P:
61.78/60.05 [ c(b(?x)) -> c(c(?x)),
61.78/60.05 a(b(?x)) -> a(b(?x)),
61.78/60.05 c(c(?x)) -> c(b(?x)) ]
61.78/60.05 S: unknown termination
61.78/60.05 failure(Step 4)
61.78/60.05 STEP: 5 (linear)
61.78/60.05 S:
61.78/60.05 [ a(b(?x)) -> b(c(?x)),
61.78/60.05 c(b(?x)) -> b(c(?x)),
61.78/60.05 b(b(?x)) -> a(c(?x)),
61.78/60.05 a(c(?x)) -> c(a(?x)),
61.78/60.05 c(c(?x)) -> b(c(?x)) ]
61.78/60.05 P:
61.78/60.05 [ c(b(?x)) -> c(c(?x)),
61.78/60.05 a(b(?x)) -> a(b(?x)),
61.78/60.05 c(c(?x)) -> c(b(?x)) ]
61.78/60.05 S: unknown termination
61.78/60.05 failure(Step 5)
61.78/60.05 STEP: 6 (relative)
61.78/60.05 S:
61.78/60.05 [ a(b(?x)) -> b(c(?x)),
61.78/60.05 c(b(?x)) -> b(c(?x)),
61.78/60.05 b(b(?x)) -> a(c(?x)),
61.78/60.05 a(c(?x)) -> c(a(?x)),
61.78/60.05 c(c(?x)) -> b(c(?x)) ]
61.78/60.05 P:
61.78/60.05 [ c(b(?x)) -> c(c(?x)),
61.78/60.05 a(b(?x)) -> a(b(?x)),
61.78/60.05 c(c(?x)) -> c(b(?x)) ]
61.78/60.05 Check relative termination:
61.78/60.05 [ a(b(?x)) -> b(c(?x)),
61.78/60.05 c(b(?x)) -> b(c(?x)),
61.78/60.05 b(b(?x)) -> a(c(?x)),
61.78/60.05 a(c(?x)) -> c(a(?x)),
61.78/60.05 c(c(?x)) -> b(c(?x)) ]
61.78/60.05 [ c(b(?x)) -> c(c(?x)),
61.78/60.05 a(b(?x)) -> a(b(?x)),
61.78/60.05 c(c(?x)) -> c(b(?x)) ]
61.78/60.05 Polynomial Interpretation:
61.78/60.05 a:= (2)*x1*x1
61.78/60.05 b:= (1)+(2)*x1*x1
61.78/60.05 c:= (1)+(2)*x1*x1
61.78/60.05 retract b(b(?x)) -> a(c(?x))
61.78/60.05 retract a(c(?x)) -> c(a(?x))
61.78/60.05 Polynomial Interpretation:
61.78/60.05 a:= (1)+(1)*x1+(2)*x1*x1
61.78/60.05 b:= (1)+(2)*x1*x1
61.78/60.05 c:= (1)+(2)*x1*x1
61.78/60.05 retract a(b(?x)) -> b(c(?x))
61.78/60.05 retract b(b(?x)) -> a(c(?x))
61.78/60.05 retract a(c(?x)) -> c(a(?x))
61.78/60.05 Polynomial Interpretation:
61.78/60.05 a:= (1)+(2)*x1
61.78/60.05 b:= (2)+(2)*x1
61.78/60.05 c:= (2)*x1
61.78/60.05 retract a(b(?x)) -> b(c(?x))
61.78/60.05 retract c(b(?x)) -> b(c(?x))
61.78/60.05 retract b(b(?x)) -> a(c(?x))
61.78/60.05 retract a(c(?x)) -> c(a(?x))
61.78/60.05 retract c(b(?x)) -> c(c(?x))
61.78/60.05 Polynomial Interpretation:
61.78/60.05 a:= (2)*x1
61.78/60.05 b:= (1)*x1
61.78/60.05 c:= (1)+(1)*x1
61.78/60.05 relatively terminating
61.78/60.05 S/P: relatively terminating
61.78/60.05 check CP condition:
61.78/60.05 /export/starexec/sandbox/benchmark/theBenchmark.trs: Failure(timeout)
61.78/60.05 (43648 msec.)
61.78/60.05 EOF