0.00/0.14 YES 0.00/0.14 0.00/0.14 # Compositional parallel rule labeling (Shintani and Hirokawa 2022). 0.00/0.14 0.00/0.14 Consider the left-linear TRS R: 0.00/0.14 0.00/0.14 f(x1,g(x2)) -> f(x1,g(x1)) 0.00/0.14 f(g(y1),y2) -> f(g(y1),g(y1)) 0.00/0.14 g(a()) -> g(b()) 0.00/0.14 b() -> a() 0.00/0.14 0.00/0.14 Let C be the following subset of R: 0.00/0.14 0.00/0.14 (empty) 0.00/0.14 0.00/0.14 All parallel critical peaks (except C's) are decreasing wrt rule labeling: 0.00/0.14 0.00/0.14 phi(f(x1,g(x2)) -> f(x1,g(x1))) = 1 0.00/0.14 phi(f(g(y1),y2) -> f(g(y1),g(y1))) = 1 0.00/0.14 phi(g(a()) -> g(b())) = 1 0.00/0.14 phi(b() -> a()) = 1 0.00/0.14 0.00/0.14 psi(f(x1,g(x2)) -> f(x1,g(x1))) = 1 0.00/0.14 psi(f(g(y1),y2) -> f(g(y1),g(y1))) = 1 0.00/0.14 psi(g(a()) -> g(b())) = 1 0.00/0.14 psi(b() -> a()) = 1 0.00/0.14 0.00/0.14 0.00/0.14 Therefore, the confluence of R follows from that of C. 0.00/0.14 0.00/0.14 # Compositional parallel critical pair system (Shintani and Hirokawa 2022). 0.00/0.14 0.00/0.14 Consider the left-linear TRS R: 0.00/0.14 0.00/0.14 (empty) 0.00/0.14 0.00/0.14 Let C be the following subset of R: 0.00/0.14 0.00/0.14 (empty) 0.00/0.14 0.00/0.14 The parallel critical pair system PCPS(R,C) is: 0.00/0.14 0.00/0.14 (empty) 0.00/0.14 0.00/0.14 All pairs in PCP(R) are joinable and PCPS(R,C)/R is terminating. 0.00/0.14 Therefore, the confluence of R follows from that of C. 0.00/0.14 0.00/0.14 # emptiness 0.00/0.14 0.00/0.14 The empty TRS is confluent. 0.00/0.14 0.00/0.15 EOF