0.00/0.24 YES 0.00/0.24 0.00/0.24 # Compositional parallel rule labeling (Shintani and Hirokawa 2022). 0.00/0.24 0.00/0.24 Consider the left-linear TRS R: 0.00/0.24 0.00/0.24 H(H(x)) -> K(x) 0.00/0.24 H(K(x)) -> K(H(x)) 0.00/0.24 0.00/0.24 Let C be the following subset of R: 0.00/0.24 0.00/0.24 H(H(x)) -> K(x) 0.00/0.24 H(K(x)) -> K(H(x)) 0.00/0.24 0.00/0.24 All parallel critical peaks (except C's) are decreasing wrt rule labeling: 0.00/0.24 0.00/0.24 phi(H(H(x)) -> K(x)) = 0 0.00/0.24 phi(H(K(x)) -> K(H(x))) = 0 0.00/0.24 0.00/0.24 psi(H(H(x)) -> K(x)) = 0 0.00/0.24 psi(H(K(x)) -> K(H(x))) = 0 0.00/0.24 0.00/0.24 0.00/0.24 Therefore, the confluence of R follows from that of C. 0.00/0.24 0.00/0.24 # Compositional parallel critical pair system (Shintani and Hirokawa 2022). 0.00/0.24 0.00/0.24 Consider the left-linear TRS R: 0.00/0.24 0.00/0.24 H(H(x)) -> K(x) 0.00/0.24 H(K(x)) -> K(H(x)) 0.00/0.24 0.00/0.24 Let C be the following subset of R: 0.00/0.24 0.00/0.24 (empty) 0.00/0.24 0.00/0.24 The parallel critical pair system PCPS(R,C) is: 0.00/0.24 0.00/0.24 H(H(H(x1_1))) -> H(K(x1_1)) 0.00/0.24 H(H(H(x1_1))) -> K(H(x1_1)) 0.00/0.24 H(H(K(x1_1))) -> H(K(H(x1_1))) 0.00/0.24 H(H(K(x1_1))) -> K(K(x1_1)) 0.00/0.24 0.00/0.24 All pairs in PCP(R) are joinable and PCPS(R,C)/R is terminating. 0.00/0.24 Therefore, the confluence of R follows from that of C. 0.00/0.24 0.00/0.24 # emptiness 0.00/0.24 0.00/0.24 The empty TRS is confluent. 0.00/0.24 0.00/0.24 EOF