0.00/0.13 YES 0.00/0.13 0.00/0.13 # Compositional parallel rule labeling (Shintani and Hirokawa 2022). 0.00/0.13 0.00/0.13 Consider the left-linear TRS R: 0.00/0.13 0.00/0.13 f(g(h(x))) -> g(f(h(g(x)))) 0.00/0.13 f(x) -> x 0.00/0.13 g(x) -> x 0.00/0.13 h(x) -> x 0.00/0.13 0.00/0.13 Let C be the following subset of R: 0.00/0.13 0.00/0.13 (empty) 0.00/0.13 0.00/0.13 All parallel critical peaks (except C's) are decreasing wrt rule labeling: 0.00/0.13 0.00/0.13 phi(f(g(h(x))) -> g(f(h(g(x))))) = 2 0.00/0.13 phi(f(x) -> x) = 1 0.00/0.13 phi(g(x) -> x) = 1 0.00/0.13 phi(h(x) -> x) = 1 0.00/0.13 0.00/0.13 psi(f(g(h(x))) -> g(f(h(g(x))))) = 2 0.00/0.13 psi(f(x) -> x) = 1 0.00/0.13 psi(g(x) -> x) = 1 0.00/0.13 psi(h(x) -> x) = 1 0.00/0.13 0.00/0.13 0.00/0.13 Therefore, the confluence of R follows from that of C. 0.00/0.13 0.00/0.13 # Compositional parallel critical pair system (Shintani and Hirokawa 2022). 0.00/0.13 0.00/0.13 Consider the left-linear TRS R: 0.00/0.13 0.00/0.13 (empty) 0.00/0.13 0.00/0.13 Let C be the following subset of R: 0.00/0.13 0.00/0.13 (empty) 0.00/0.13 0.00/0.13 The parallel critical pair system PCPS(R,C) is: 0.00/0.13 0.00/0.13 (empty) 0.00/0.13 0.00/0.13 All pairs in PCP(R) are joinable and PCPS(R,C)/R is terminating. 0.00/0.13 Therefore, the confluence of R follows from that of C. 0.00/0.13 0.00/0.13 # emptiness 0.00/0.13 0.00/0.13 The empty TRS is confluent. 0.00/0.13 0.00/0.13 EOF