

Theorem (Hindley 1964)

 $\bigcup_{i \in I} \mathcal{R}_i$ and $\bigcup_{j \in J} \mathcal{S}_j$ commute if \mathcal{R}_i and \mathcal{S}_j commute for all $i \in I$ and $j \in J$

Theorem (Hindley 1964)

 $\bigcup_{i \in I} \mathcal{R}_i$ and $\bigcup_{j \in J} \mathcal{S}_j$ commute if \mathcal{R}_i and \mathcal{S}_j commute for all $i \in I$ and $j \in J$

▶ left-linearity is often essential for commutation! ◄