Hakusan,

photo: C白山市観光連盟

Definition

P is compositional confluence criterion if for all TRSs \mathcal{R} and \mathcal{C} with $\mathcal{C} \subseteq \mathcal{R}$:

 $\mathbf{P}(\mathcal{R},\mathcal{C}) \text{ and } \mathsf{CR}(\mathcal{C}) \implies \mathsf{CR}(\mathcal{R})$

Hakusan repeatedly uses compositional variants of two criteria:

Definition

P is compositional confluence criterion if for all TRSs \mathcal{R} and \mathcal{C} with $\mathcal{C} \subseteq \mathcal{R}$:

 $\mathbf{P}(\mathcal{R},\mathcal{C}) \text{ and } \mathsf{CR}(\mathcal{C}) \implies \mathsf{CR}(\mathcal{R})$

Hakusan repeatedly uses compositional variants of two criteria:

rule labeling

(van Oostrom 2008; Zankl et al. 2015)

Definition

P is compositional confluence criterion if for all TRSs \mathcal{R} and \mathcal{C} with $\mathcal{C} \subseteq \mathcal{R}$:

 $\mathbf{P}(\mathcal{R},\mathcal{C}) \text{ and } \mathsf{CR}(\mathcal{C}) \implies \mathsf{CR}(\mathcal{R})$

Hakusan repeatedly uses compositional variants of two criteria:

rule labeling (van Oostrom 2008; Zankl et al. 2015)
critical pair systems (next slide) (Hirokawa and Middeldorp 2011)

Theorem (Shintani and Hirokawa, FSCD 2022)

left-linear TRS \mathcal{R} is confluent if

Theorem (Shintani and Hirokawa, FSCD 2022)

left-linear TRS \mathcal{R} is confluent if

all parallel critical pairs are joinable and

Theorem (Shintani and Hirokawa, FSCD 2022)

- left-linear TRS ${\mathcal R}$ is confluent if
 - all parallel critical pairs are joinable and
 - **\mathbf{P}/\mathcal{R}** is terminating

Theorem (Shintani and Hirokawa, FSCD 2022)

left-linear TRS \mathcal{R} is confluent if

- all parallel critical pairs are joinable and
- **\mathbf{P}/\mathcal{R}** is terminating

for some confluent subsystem $\mathcal{C} \subseteq \mathcal{R}$, where

Theorem (Shintani and Hirokawa, FSCD 2022)

left-linear TRS \mathcal{R} is confluent if

- all parallel critical pairs are joinable and
- **P** $/\mathcal{R}$ is terminating

for some confluent subsystem $C \subseteq \mathcal{R}$, where

 $\mathcal{P} = \{ s \to t, s \to u \mid t_{\mathcal{R}} \notin s \xrightarrow{\epsilon}_{\mathcal{R}} u \text{ is parallel critical peak but not } t \leftrightarrow_{\mathcal{C}}^* u \}$

Theorem (Shintani and Hirokawa, FSCD 2022)

left-linear TRS $\mathcal R$ is confluent if

- all parallel critical pairs are joinable and
- **P** $/\mathcal{R}$ is terminating

for some confluent subsystem $\mathcal{C} \subseteq \mathcal{R}$, where

 $\mathcal{P} = \{ s \to t, s \to u \mid t \underset{\mathcal{R}}{\leftarrow} s \underset{\mathcal{R}}{\overset{\epsilon}{\rightarrow}} u \text{ is parallel critical peak but not } t \leftrightarrow_{\mathcal{C}}^{*} u \}$

Note

- Hakusan only deals with left-linear TRSs
- it only supports two methods but it is quite powerful

Hakusan