Hakusan 0.5: A Confluence Tool

Kiraku Shintani and Nao Hirokawa

JAIST, Japan

s1820017@jaist.ac.jp, hirokawa@jaist.ac.jp

Hakusan is a prototype tool for automatically proving confluence of left-linear term rewrite systems (TRSs). The tool, written in Haskell, is freely available at:

http://www.jaist.ac.jp/project/saigawa/

The typical usage is: hakusan <file>. Here the input file is written in the TRS format [3]. The tool outputs YES if confluence of the input TRS is proved, and MAYBE if the tool does not reach any conclusion. Currently the tool does not support non-confluence analysis.

Confluence analysis in Hakusan is based on *compositional* confluence criteria [4], which mean sufficient conditions such that, given a rewrite system \mathcal{R} and its subsystem $\mathcal{C} \subseteq \mathcal{R}$, confluence of \mathcal{C} implies that of \mathcal{R} . Compositional criteria can be seen as a combination method for confluence analysis. Hakusan alternately uses two compositional confluence criteria: One is a compositional version of the rule labeling method [6, Theorem 56], and the other is a compositional version of the confluence criterion by critical pair systems [1].

Theorem 1. Let \mathcal{R} be a left-linear TRS and \mathcal{C} a confluent TRS with $\mathcal{C} \subseteq \mathcal{R}$, and also let ϕ and ψ be labeling functions from \mathcal{R} to \mathbb{N} . The TRS \mathcal{R} is confluent if we have $\mathcal{R}_{\phi,0} = \mathcal{C} = \mathcal{R}_{\psi,0}$ and the following conditions hold for all $(k,m) \in \mathbb{N}^2 \setminus \{(0,0)\}$.

- Every parallel critical peak of form $t_{\phi,k} \leftrightarrow s \xrightarrow{\epsilon}_{\psi,m} u$ is (ψ, ϕ) -decreasing.
- Every parallel critical peak of form $t_{\psi,m} \leftrightarrow s \xrightarrow{\epsilon}_{\phi,k} u$ is (ϕ, ψ) -decreasing.

Here $\mathcal{R}_{\phi,k}$ stands for $\{\ell \to r \in \mathcal{R} \mid \phi(\ell \to r) \leq k\}$ and $\#_{\phi,k}$ for the parallel step of $\mathcal{R}_{\phi,k}$. See [4, Definition 27] for the definition of (ψ, ϕ) -decreasingness.

Theorem 2. Let \mathcal{R} be a left-linear TRS and \mathcal{C} a confluent TRS with $\mathcal{C} \subseteq \mathcal{R}$. The TRS \mathcal{R} is confluent if $_{\mathcal{R}} \xleftarrow{} \Rightarrow_{\mathcal{R}} \subseteq \xrightarrow{*}_{\mathcal{R}} \stackrel{*}{\sim}_{\mathcal{R}} \leftarrow and \mathcal{P}/\mathcal{R}$ is terminating. Here \mathcal{P} stands for the TRS: $\{s \to t, s \to u \mid t_{\mathcal{R}} \xleftarrow{} s \xrightarrow{\epsilon}_{\mathcal{R}} u \text{ is a parallel critical peak but not } t \leftrightarrow_{\mathcal{C}}^{*} u\}.$

For automation, the tool employs the SMT solver Z3 [2] for finding suitable labeling functions, and the termination tool NaTT [5] for testing relative termination.

References

- N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative termination. Journal of Automated Reasoning, volume 47, pages 481–501, 2011.
- [2] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proc. 12th TACAS, volume 4963 of LNCS, pages 337–340, 2008.
- [3] A. Middeldorp, J. Nagele, and K. Shintani. Confluence Competition 2019. Proc. 25th TACAS, volume 11429 of LNCS, pages 25–40, 2019.
- [4] K. Shintani and N. Hirokawa. Compositional Confluence Criteria. In Proc. 7th FSCD, 2022.
- [5] A. Yamada and K. Kusakari and T. Sakabe. Nagoya Termination Tool. In Proc. 25th RTA, volume 8560 of LNCS, pages 446–475, 2014.
- [6] H. Zankl, B. Felgenhauer, and A. Middeldorp. Labelings for decreasing diagrams. Journal of Automated Reasoning, volume 54, pages 101–133, 2015.