

infChecker at CoCo 2021

Raúl Gutiérrez¹ Salvador Lucas² Miguel Vítores² BUENOS AIRES, JULY 23RD, 2021

¹Universidad Politécnica de Madrid Spain

²Valencian Research Institute for Artificial Intelligence Universitat Politècnica de València Spain

Description

- infChecker is a tool for checking (in)feasibility of goals $\mathcal{G} = \{F_i\}_{i=1}^m$, where $F_i = (s_{ij} \bowtie_{ij} t_{ij})_{i=1}^{n_i}$.
- ⋈_{ij} represents **predicates** on terms defined by provability
 of goals s ⋈_{ij} t with respect to a *first-order theories* Th_{⋈ij}.
- \bowtie_{ij} can be one of the following predicates:
 - One (CS-)rewriting step (->, \->).
 - Zero or more (CS-)rewriting steps (->*, \->*).
 - One or more (CS-)rewriting steps (->+, \->+).
 - Subterm (|>=) and strict subterm (|>).
 - (CS-)Joinability (->*<-, \->*<-/).
 - One (CS-)convertibility step (<-->, <-/\->).
 - Zero or more (CS-)convertibility steps (<-->*, <-/\->*).

Implementation

- The tool is available here:
 http://zenon.dsic.upv.es/infChecker/.
- It is written in Haskell and provides a first implementation of the Feasibility Framework, where four processors have been implemented:
 - P^{Sat} integrates a satisfiability approach to prove infeasibility using model generators as AGES and Mace4 to find a proof.
 - P^{UR} simplifies problems by removing non-usable rules.
 - P^{Prov} integrates a logic-based approach to program analysis to prove feasibility by theorem proving. In infChecker, we use the theorem prover Prover9.
 - P^{NC} adapt the processor that **narrow conditions** in the 2D
 DP framework for proving operational termination of CTRs to be used with feasibility sequences.

Strategy and Results

- Our proof strategy is:
 - 1 we apply P^{UR} whenever it is sound and complete;
 - we try to prove feasibility using P^{Prov};
 - 3 if P^{Prov} fails, we apply P^{Sat};
 - 4 if P^{Sat} fails, we apply P^{NC};
 - **5** if P^{NC} succeeds and modifies the feasibility sequence, we repeat the strategy, otherwise we return MAYBE.
- Bibliography:
- GL20 R. Gutiérez and S. Lucas. Automatically Proving and Disproving Feasibility Conditions. In Proc. of IJCAR'2020, LNCS 12167:416–435. Springer, 2020.
- **Luc19** S. Lucas. Proving semantic properties as first-order satisfiability. Artificial Intelligence 277, paper 103174, 24 pages, 2019.
- LG18 S. Lucas and R. Gutiérrez. Use of Logical Models for Proving Infeasibility in Term Rewriting. Information Processing Letters, 136:90-95, 2018.