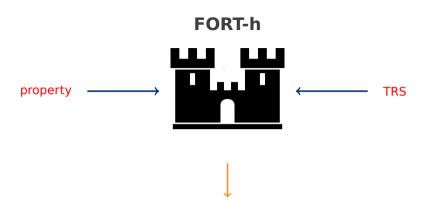
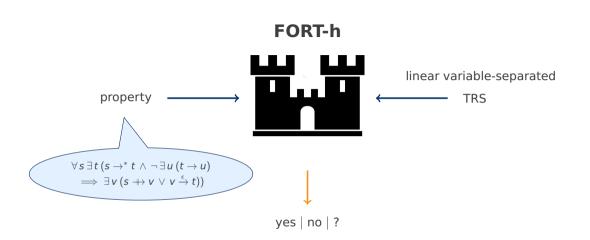
### universität innsbruck

### supported by FUIF project P30301




## CoCo 2021 Participant: FORT-h 1.1


Fabian Mitterwallner Jamie Hochrainer Aart Middeldorp

### FORT-h





yes | no | ?



#### property is arbitrary formula in first-order theory of rewriting

## CoCo 2020 Categories (FORT-h) GCR NFP UNC UNR COM

| CoCo 2020 Categories (FORT-h) |   |     |     |     |     |                  |
|-------------------------------|---|-----|-----|-----|-----|------------------|
| GC                            | R | NFP | UNC | UNR | СОМ | most YES results |

## CoCo 2021 Categories (FORT-h) GCR NFP UNC UNR COM

GCR NFP UNC UNR COM

### Differences FORT and FORT-h (2020)

- modified decision procedure
- supports linear variable-separated TRSs
- more expressive theory ( $ightarrow_{>\epsilon}$ )
- goal: certified results

# CoCo 2021 Categories (FORT-h) GCR NFP UNC UNR COM

### Differences 2020 and 2021

- certified results!
- FORTify can certify proofs



GCR NFP UNC UNR COM

### Differences 2020 and 2021

- certified results!
- FORTify can certify proofs
- optimized signature extension results (IWC 2021)



GCR NFP UNC UNR COM

#### Differences 2020 and 2021

- certified results!
- FORTify can certify proofs
- optimized signature extension results (IWC 2021)
- faster/smaller automata constructions via eager epsilon eliminations

GCR NFP UNC UNR COM

#### Differences 2020 and 2021

- certified results!
- FORTify can certify proofs
- optimized signature extension results (IWC 2021)
- faster/smaller automata constructions via eager epsilon eliminations

https://fortissimo.uibk.ac.at/fort(ify)/

