
CO3 (Version 2.2)

Naoki Nishida

Nagoya University, Nagoya, Japan
nishida@i.nagoya-u.ac.jp

CO3, a converter for proving confluence of conditional TRSs,1 tries to prove confluence
of conditional term rewrite systems (CTRSs, for short) by using a transformational approach
(cf. [5]). The tool first transforms a given weakly-left-linear (WLL, for short) 3-DCTRS into
an unconditional term rewrite system (TRS, for short) by using Uconf [2], a variant of the
unraveling U [8], and then verifies confluence of the transformed TRS by using the following
theorem: a 3-DCTRS R is confluent if R is WLL and Uconf (R) is confluent [1, 2]. The tool
is very efficient because of very simple and lightweight functions to verify properties such as
confluence and termination of TRSs. Since version 2.0, a narrowing-tree-based approach [6, 3]
to prove infeasibility of a condition w.r.t. a specified CTRS has been implemented [4]. The
approach is applicable to syntactically deterministic CTRSs that are operationally terminating
and ultra-right-linear w.r.t. the optimized unraveling.

When join and semi-equational CTRSs are given as input, the previous version returns
MAYBE but the present one accepts them as input. To prove confluence of join CTRSs, we
consider them as oriented ones [7, Section 5.3].

Theorem 1. Let R be a join CTRS, and R′ be {`→ r ⇐ s1 � x1, t1 � x1, . . . , sk � xk, tk �
xk ∈ R | ` → r ⇐ s1 ↓ t1, . . . , sk ↓ tk, x1, . . . , xk are distinkt fresh variables}. Then, (1)
→R =→R′ , and (2) R is confluent if and only if R′ is so.

To prove confluence of semi-equational CTRSs, we consider them as join (i.e., oriented) ones.

Theorem 2. Let R be a semi-equational CTRS, and R′ be {`→ r ⇐ s1 ↓ t1, . . . , sk ↓ tk ∈ R |
` → r ⇐ s1 ↔∗ t1, . . . , sk ↔∗ tk}. Then, all of the following hold: (1) →R ⊇ →R′ ; if R′ is
confluent, then (2) →R ⊆ →R′ and (3) R is confluent.

Note that the present version does not disprove confluence of join and semi-equational CTRSs.
To prove infeasibility of a condition c, the tool first prove confluence, and then linearizes c

if failed to prove confluence; then, the tool computes and simplifies a narrowing tree for c, and
examines the emptiness of the narrowing tree.

References

[1] K. Gmeiner, B. Gramlich, and F. Schernhammer. On soundness conditions for unraveling deter-
ministic conditional rewrite systems. In Proc. RTA 2012, vol. 15 of LIPIcs, pp. 193–208, 2012.

[2] K. Gmeiner, N. Nishida, and B. Gramlich. Proving confluence of conditional term rewriting systems
via unravelings. In Proc. IWC 2013, pp. 35–39, 2013.

[3] Y. Maeda, N. Nishida, M. Sakai, and T. Kobayashi. Extending narrowing trees to basic narrowing
in term rewriting. IEICE Tech. Rep. SS2018-39, Vol. 118, No. 385, pp. 73–78, 2019, in Japanese.

[4] N. Nishida. CO3 (Version 2.1). In Proc. IWC 2020, page 67, 2020.

[5] N. Nishida, T. Kuroda, and K. Gmeiner. CO3 (Version 1.3). In Proc. IWC 2016, p. 74, 2016.

[6] N. Nishida and Y. Maeda. Narrowing trees for syntactically deterministic conditional term rewriting
systems. In Proc. FSCD 2018, vol. 108 of LIPIcs, pp. 26:1–26:20, 2018.

[7] N. Nishida, M. Sakai, and T. Sakabe. Soundness of unravelings for conditional term rewriting
systems via ultra-properties related to linearity. Log. Methods Comput. Sci., 8(3):1–49, 2012.

[8] E. Ohlebusch. Termination of logic programs: Transformational methods revisited. Appl. Algebra
Eng. Commun. Comput., 12(1/2):73–116, 2001.

1http://www.trs.css.i.nagoya-u.ac.jp/co3/

http://www.trs.css.i.nagoya-u.ac.jp/co3/

