CoCo 2015 Participant: CSI^{ho} 0.1^{*}

Julian Nagele

Institute of Computer Science, University of Innsbruck, Austria julian.nagele@uibk.ac.at

Higher-order rewriting combines standard, first-order rewriting with notions and concepts from the λ -calculus, resulting in rewriting systems with higher-order functions and bound variables. CSI^ho is a tool for automatically proving confluence of such higher-order systems, specifically pattern rewrite systems (PRSs) as introduced by Nipkow [2,3]. The restriction to pattern left-hand sides is essential for obtaining decidability of unification and thus makes it possible to compute critical pairs. To this end CSI[^]ho implements a version of Nipkow's algorithm for higher-order pattern unification [4].

CSI^{ho} is built on top of CSI [8], a powerful confluence prover for first-order term rewrite systems, and is available from

http://cl-informatik.uibk.ac.at/software/csi/ho/

Using CSI as foundation, CSI^{ho} inherits many of its attractions, in particular a strategy language, which allows for flexible configuration. The following confluence criteria are currently supported in CSI^{ho}:

- Knuth and Bendix' criterion, that is, for terminating PRSs we decide confluence by checking joinability of critical pairs [3]. This is currently the only method CSI^{ho} implements for proving non-confluence. For showing termination the supported techniques are a basic higher-order recursive path ordering [7] and static dependency pairs with dependency graph decomposition and the subterm criterion [1].
- Weak orthogonality [6], i.e., left-linearity and s = t for all critical pairs $s \leftarrow \rtimes \rightarrow t$.
- Van Oostrom's development closed critical pair criterion [5]. That is, we conclude confluence of a left-linear PRS if $\leftarrow \rtimes \to \subseteq \twoheadrightarrow$ and $\leftarrow \bowtie \to \subseteq \twoheadrightarrow \cdot^* \leftarrow$. Here we approximate \to^* by \twoheadrightarrow .

References

- [1] K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair method based on strong computability for higher-order rewrite systems. IEICE TIS, 92-D(10):2007-2015, 2009.
- [2] R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. TCS, 192(1):3–29, 1998. [3] T. Nipkow. Higher-order critical pairs. In Proc. 6th LICS, pages 342–349, 1991.
- [4] Tobias Nipkow. Functional unification of higher-order patterns. In Proc. 8th LICS, pages 64–74, 1993.
- [5] V. van Oostrom. Developing developments. TCS, 175(1):159-181, 1997.
- [6] V. van Oostrom and F. van Raamsdonk. Weak orthogonality implies confluence: The higher order case. In Proc. 3rd LFCS, volume 813 of LNCS, pages 379-392, 1994.
- [7] F. van Raamsdonk. On termination of higher-order rewriting. In Proc. 12th RTA, volume 2051 of LNCS, pages 261–275, 2001.
- [8] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI A confluence tool. In Proc. 23rd CADE, volume 6803 of LNCS (LNAI), pages 499-505, 2011.

^{*}Supported by Austrian Science Fund (FWF), project P27528.

A. Tiwari & T. Aoto (ed.); 4th International Workshop on Confluence, pp. 47-47