
CO3: a COnverter for proving COfluence of COnditional term rewriting systems∗

Naoki Nishida
Nagoya University

nishida@is.nagoya-u.ac.jp

Makishi Yanagisawa
Nagoya University

makishi@trs.cm.is.nagoya-u.ac.jp

Karl Gmeiner
UAS Technikum Wien

gmeiner@technikum-wien.at

June 27, 2014

1 Overview

CO3 is a tool for proving confluence of conditional term
rewriting systems (CTRS) by using a transformational
approach. The tool is based on the result in [4]: the
tool first transforms a given normal 1-CTRS into an un-
conditional term rewriting system (TRS) by using the
SR transformation [5], and then verify confluence of the
transformed TRS.

The tool is available from http://www.trs.cm.is.

nagoya-u.ac.jp/co3/ via a web interface.

2 Supported Classes

The tool supports normal 1-CTRSs without any strategy
and theory (specified by STRATEGY and THEORY, resp.),
the class of which includes TRSs. The implemented tech-
niques for TRSs are very poor since the tool is focusing on
CTRSs. Due to a technical reason as shown later, indeed
the tool is working for weakly left-linear CTRSs which
has at least one condition.

3 Technical Background

The (optimized) SR transformation [5] is denoted by SR.

Theorem 1 A weakly left-linear normal 1-CTRS R is
confluent if SR(R) is confluent [4]. An orthogonal TRS
is confluent [2]. A terminating TRS is confluent if all its
critical pairs are joinable [3].

4 Implemented Procedure

Given a CTRS R, the tool performs as follows:

1. If R is a normal 1-CTRS, then go to the next step,
and otherwise, stop with printing “UNSUPPORTED”.

2. If R is a TRS, then let R′ := R and go to Step 5.

3. If R is weakly left-linear, then go to the next step,
and otherwise, stop with printing “MAYBE”.1

4. Apply SR toR, obtainingR′ byR′ := SR(R). Then,
go to the next step. Note that if R is a constructor
system, then we do not introduce a special unary

∗The research in this paper is partly supported by the Austrian
Science Fund (FWF) international project I963 and the Japan So-
ciety for the Promotion of Science (JSPS).

1We may use criteria for proving confluence of CTRSs directly,
but we did not implement such an approach in order to concentrate
on the technique using transformations.

symbol wrapping the evaluation of conditions, that
is, we apply the transformation of Antoy, Brassel,
and Hanus [1] (see [5]).

5. Verify confluence of R′ by using the existing criteria
or other tools for proving confluence of TRSs. If
R′ is confluence, then stop with printing “YES”, and
otherwise, go to the next step. The current version of
the tool is checking whether (i) R′ is orthogonal, or
(ii) R′ is terminating (under a very simple syntactic
criterion) and all critical pairs of R′ are joinable.

6. Try to disprove confluence by the following simple
criterion: there exists an unconditional critical pair
(s, t) of R such that s and t are different ground and
strongly irreducible w.r.t. R. If this criterion is sat-
isfied, then stop with printing “NO”, and otherwise,
stop with printing “MAYBE”.

One can use the tool by the following command:

co3 trs-format-file

The output of the execution is “UNSUPPORTED”, “YES”,
“NO”, or “MAYBE” (or an error message if unexpected er-
rors (e.g., on syntax) happen).

5 Remarks

This tool is basically a converter of CTRSs to TRSs. The
main expected use of this tool is the collaboration with
other tools for proving confluence of TRSs. For this pur-
pose, the tool provides a pure converter, named CO2 (a
COnverter of COnditional term rewriting systems):

co2 trs-format-file

The result is a TRS in the trs format, and nothing if the
input is unsupported.

References
[1] S. Antoy, B. Brassel, and M. Hanus. Conditional narrowing

without conditions. In Proc. PPDP 2003, pages 20–31. ACM,
2003.

[2] J. W. Klop. Term Rewriting Systems, volume 2 of Handbook
of Logic in Computer Science, pages 1–116. Oxford University
Press, 1992.

[3] D. E. Knuth and P. B. Bendix. Simple word problems in univer-
sal algebras. Computational problems in abstract algebra, pages
263–297, 1970.

[4] N. Nishida, M. Yanagisawa, and K. Gmeiner. On proving con-
fluence of conditional term rewriting systems via the computa-
tionally equivalent transformation. In Proc. IWC 2014, 2014.
to appear.

[5] T.-F. Şerbănuţă and G. Roşu. Computationally equivalent elim-
ination of conditions. In Proc. RTA 2006, volume 4098 of LNCS,
pages 19–34. Springer, 2006.

1


