Saigawa: A Confluence Tool^{*}

Nao Hirokawa	Dominik Klein
JAIST, Japan	JAIST, Japan
hirokawa@jaist.ac.jp	dominik.klein@jaist.ac.jp

Saigawa is a tool for automatically proving or disproving confluence of (ordinary) term rewrite systems (TRSs). The tool, written in OCaml, is freely available from

http://www.jaist.ac.jp/project/saigawa/

This system description is based on Saigawa version 1.4. The typical usage of the tool is: saigawa <file>. Here the input file is written in the standard WST format. The tool outputs YES if confluence of the input TRS is proved, NO if non-confluence is shown, and MAYBE if the tool does not reach any conclusion. The tool is based on the next four confluence criteria.

Theorem 1 ([1, Theorem 3]). A left-linear TRS \mathcal{R} is confluent if $CP(\mathcal{R}) \subseteq \downarrow_{\mathcal{R}}$ and $CPS'(\mathcal{R})/\mathcal{R}$ is terminating.

Theorem 2 ([4, Theorem 2]). Suppose \mathcal{R} and \mathcal{S} are strongly non-overlapping on each other, \mathcal{S} is confluent, and \mathcal{R}/\mathcal{S} is terminating. The TRS $\mathcal{R} \cup \mathcal{S}$ is confluent iff $\mathsf{CP}_{\mathcal{S}}(\mathcal{R}) \subseteq \downarrow_{\mathcal{R} \cup \mathcal{S}}$.

Theorem 3 ([5]). A TRS \mathcal{R} is confluent if every critical peak is decreasing with respect to the rule labeling heuristic.

Theorem 4 ([3]). Suppose \mathcal{R}/AC is terminating. The TRS $\mathcal{R} \cup AC$ is confluent if and only if $CP_{AC}(\mathcal{R}) \subseteq \xrightarrow{*}_{\mathcal{R},AC} \cdot \xleftarrow{*}_{\mathcal{AC}} \cdot \underset{\mathcal{R},AC}{\overset{*}\leftarrow}$.

Our tool uses $\mathsf{T}_{\mathsf{T}}\mathsf{T}_2$ and MU -TERM to check (relative) termination.¹ When termination of \mathcal{R} is proved, for every $(s,t) \in \mathsf{CP}(\mathcal{R})$ the joinability $s \downarrow_{\mathcal{R}} t$ is tested by comparing normal forms of s and t. In the other cases we test $s \to_{\mathcal{R}}^m \leftarrow n \in t$ for each $(s,t) \in \mathsf{CP}(\mathcal{R} \cup \mathcal{R}^{-1})$ and $1 \leq m, n \leq 5$. Unjoinability is detected by testing whether $\mathsf{TCAP}_{\mathcal{R}}(s)$ and $\mathsf{TCAP}_{\mathcal{R}}(t)$ do not unify [6]. In order to apply Theorem 2 we need to appropriately split a TRS into \mathcal{R} and \mathcal{S} . In our tool this is done by simple enumeration, and confluence of \mathcal{S} is checked in a recursive manner. A suitable rule labeling is searched by using the SMT solver MiniSmt,² see [1, Section 4] for details of automation. We are planning to support a commutation criterion [2] in the next version.

References

- N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative termination. Journal of Automated Reasoning, 47:481–501, 2011.
- [2] N. Hirokawa and A. Middeldorp. Commutation via relative termination. In Proc. 2nd IWC, pages 29–33, 2013.
- J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM Journal on Computing, 15(4):1155–1194, 1986.
- [4] D. Klein and N. Hirokawa. Confluence of non-left-linear TRSs via relative termination. In Proc. 18th LPAR, volume 7180 of LNCS, pages 258–273, 2012.
- [5] V. van Oostrom. Confluence by decreasing diagrams converted. In Proc. 19th RTA, volume 5117 of LNCS, pages 306–320, 2008.
- [6] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI a confluence tool. In Proc. 23th CADE, volume 6803 of LNAI, pages 499–505, 2011.

^{*}This work is supported by the JSPS KAKENHI Grant Number 25730004.

¹http://colo6-c703.uibk.ac.at/ttt2/ and http://zenon.dsic.upv.es/muterm/

²http://cl-informatik.uibk.ac.at/software/minismt/