Problem: f(x,y) -> x f(x,y) -> f(x,g(y)) g(x) -> h(x) F(g(x),x) -> F(x,g(x)) F(h(x),x) -> F(x,h(x)) Proof: sorted: (order) 0:f(x,y) -> x f(x,y) -> f(x,g(y)) g(x) -> h(x) 1:g(x) -> h(x) F(g(x),x) -> F(x,g(x)) F(h(x),x) -> F(x,h(x)) ----- sorts [1>4, 1>5, 2>3, 3>5] sort attachment (non-strict) f : 4 x 5 -> 1 g : 5 -> 5 h : 5 -> 5 F : 3 x 5 -> 2 ----- 0:f(x,y) -> x f(x,y) -> f(x,g(y)) g(x) -> h(x) Church Rosser Transformation Processor: strict: f(x,y) -> x f(x,y) -> f(x,g(y)) g(x) -> h(x) weak: critical peaks: 2 x <-0|[]- f(x,y) -1|[]-> f(x,g(y)) f(x,g(y)) <-1|[]- f(x,y) -0|[]-> x Closedness Processor (*parallel*): strict: weak: Qed 1:g(x) -> h(x) F(g(x),x) -> F(x,g(x)) F(h(x),x) -> F(x,h(x)) Church Rosser Transformation Processor (kb): g(x) -> h(x) F(g(x),x) -> F(x,g(x)) F(h(x),x) -> F(x,h(x)) critical peaks: joinable Matrix Interpretation Processor: dim=1 interpretation: [F](x0, x1) = 2x0 + x1, [h](x0) = 2x0 + 2, [g](x0) = 4x0 + 4 orientation: g(x) = 4x + 4 >= 2x + 2 = h(x) F(g(x),x) = 9x + 8 >= 6x + 4 = F(x,g(x)) F(h(x),x) = 5x + 4 >= 4x + 2 = F(x,h(x)) problem: Qed